A Note on Improper Movement and Locality of AGRE in Japanese
Masahiko Takahashi (Yamagata University)

Synopsis There has been a growing body of literature that attempts to explain why A-movement out of a CP, which is often ruled out as “improper” movement (A-A’-A movement cf. Chomsky 1973, May 1979, Fukui 1993, Ura 2001) is indeed sometimes possible (cf. Obata 2010). Against this backdrop, I provide new evidence that the availability of “improper” movement in a certain Japanese case is explained in terms of locality of AGRE (cf. Halpert 2012, Funakoshi 2014).

Data Japanese has Cs including to for reports and ka for questions (cf. Saito 2010, 2012).
1. Mary-ga Hanako-ga kasiko-i {to omotte-ru. / ka tatune-ta.}
Mary-NOM Hanako-NOM smart-PRS {C think-PRS / C inquire-PST}
‘Mary thinks that Hanako is smart.’
2. Mary-ga [VP Hanako-o orokanimo [CP t_i [TP t_i kasiko-i] to] omotte[i]-ru.
Mary-NOM [VP Hanako-ACC stupidly [CP t_i [TP t_i smart-PRS] C think]-PRS
‘Mary stupidly thinks that Hanako is smart.’
Mary-NOM [VP Hanako-ACC stupidly [CP t_i [TP t_i smart-PRS] C inquire]-PST
‘Mary stupidly inquired whether Hanako is smart.’

Previous Analysis Takeuchi (2010) argues that the contrast is explained by (i) optional phi-feature inheritance from to to T (cf.(4)/(5)) and (ii) obligatory phi-feature inheritance from ka to T (cf. (5) (Chomsky 2008). Takeuchi (2010) assumes to and ka are phase heads in (4) and (5):

\[
\begin{align*}
\text{(4) } & \left[\text{VP} \quad \text{NP}_{\text{ACC}} \quad \text{CP} \quad t_i \quad [\text{TP} t_i \text{kasiko-i}] \quad \text{to} \quad \text{omotte[i]-ru.} \right] \\
\text{(5) } & \left[\text{VP} \quad \text{NP}_{\text{ACC}} \quad \text{CP} \quad t_i \quad [\text{TP} t_i \text{kasiko-i}] \quad \text{ka} \quad \text{tatune-ta.} \right]
\end{align*}
\]

When to retains phi-features (cf. (4)), T does not assign Case (cf. Chomsky 2008) and the phi-features attract the subject to CP Spec, which is a phase edge. The subject gets accusative Case via AGRE at the embedded CP Spec (cf. Hiraiawa 2005). As to retains phi-features, the Spec CP counts as an A-position and movement into the matrix VP does not violate the ban on improper movement (A-A’-A movement). When feature inheritance takes place with to (cf.(5)), the embedded T assigns nominative Case to the embedded subject. As to loses phi-features, to cannot attract the embedded subject via A-movement. As phi-features of ka must be inherited to T (cf.(5)), A-movement into the Spec CP is also impossible. Note however that nominative Case assignment and A-movement into the matrix clause can take place independently:

\[
\begin{align*}
\text{(6) } & \left[\text{VP} \quad \text{Hanako-o orokanimo} \quad [\text{CP} t_i \quad [\text{TP} t_i \text{se-ga taka-i}] \quad \text{to} \quad \text{omotte[i]-ru.} \right] \\
\text{Mary-NOM} \left[\text{VP} \quad \text{Hanako-ACC stupidly} \quad [\text{CP} t_i \quad [\text{TP} t_i \text{height-NOMtall-PRS}]] \quad \text{think}-\text{PRS} \right]
\end{align*}
\]

‘Mary stupidly thinks that Hanako is tall.’

Hanako, which is the possessor of se ‘height’, moves into the matrix VP through the embedded CP Spec and se ‘height’ in the embedded clause gets nominative Case. On Takeuchi’s (2010) analysis, to in (6) has to satisfy the conflicting requirements: (i) inheritance of phi-features for nominative Case assignment and (ii) retention of its phi-features for attraction of the embedded subject. This shows that phi-feature inheritance from to to T does not necessarily make the Spec of the to-headed CP an A’-position. Furthermore, as NP movement into the matrix VP and phi-feature inheritance can take place simultaneously, obligatorily feature inheritance with ka no longer guarantees (without stipulations) the unavailability of A-movement into the specifier of the ka-headed CP that can be followed by further A-movement.

Analysis I argue that the contrast between (2) and (3) is explained by (i) (non-)nominal nature of Cs, and (ii) a Case property of \(v \) in Japanese, (iii) locality of AGRE that incorporates the A-over-A condition (Halpert 2012, Funakoshi 2014 cf. Chomsky 1964). First, Saito (2010, 2012) shows that to-headed CPs resist Case while ka-headed CPs (optionally) have Case.

\[
\begin{align*}
\text{(7) } & \left[\text{VP} \quad \text{Hanako-ga kasiko-i} \quad \text{to-o omotte-ru.} / \text{ka-o tazune-ta} \right] \\
\text{Mary-NOM} \left[\text{VP} \quad \text{Hanako-NOM smart-PRS} \quad \text{C ACC think-PRS / C ACC inquire-PST} \right]
\end{align*}
\]

‘Mary thinks that Hanako is smart.’
If Case-assignment is conditioned by phi-feature valuation (Chomsky 2000, 2008), (7) suggests while *ka*-has (interpretable) phi-features, *to* does not. Second, I assume (ii) *ν* cannot agree with more than one goal (cf. Ura 1996). Finally, I assume (iii) the closest goal for AGREE is defined in terms of the A-over-A condition as well as relativized minimality (cf. Rizzi 1990). Assuming with Saito (2010, 2012) that the CP layer has Fin, Force, and Report and *to* is Report, “improper” movement with the *to* headed CP (ReportP) in (2) is analyzed as follows:

(8) \[[[νP] [[VP NP{ACC} suddenly[ReportP|ForceP|FinP \[i \ [TP \ t_i{\{NOM\}}] \ T-Fin] \ [to] \ think] \] \ ✔AGREE] \]

I assume that Fin and T together assigns nominative Case and Fin is a phase head. The embedded subject, which first receives nominative Case within the embedded TP, moves to the edge of FinP. The matrix *ν*- *V* assigns accusative Case to the embedded subject (via Case-revision cf. Bruning 2001). I propose that NP movement into the matrix VP in (8) is conditioned by AGREE (cf. Hiraiwa 2005). As there is no locality violation of AGREE, the embedded subject may move into the matrix VP. When the complement CP is headed by *ka*, which bears phi-features, there is a locality violation (I assume with Saito (2010, 2012) that *ka* is Force):

(9) \[[[νP] [[VP ForceP|FinP NP{ACC} \[i \ [TP \ t_i{\{NOM\}}] \ T-Fin] \ [ka,] \] \ think] \] \ ✔AGREE] \]

As ForceP/*ka* is closer to the matrix *ν*- *V* than the embedded subject (the embedded subject is dominated by ForceP) and *ν* can agree with only a single goal, the embedded subject in the FinP Spec cannot get accusative Case. When *ka* bears an unvalued Case-feature, *ka* gets accusative Case and when *ka* does not bear a Case-feature, it causes a defective intervention effect (cf. Chomsky 2000). The ban on movement into the matrix VP in (9) follows from the failure of AGREE: as the matrix *ν*- *V* cannot AGREE with the embedded subject, movement into the matrix VP is also blocked. The analysis also covers (6):

(10) \[[[νP] [[VP NP{ACC} suddenly[ReportP|ForceP|FinP \[i \ [TP \ t_i{\{NOM\}}] \ NP{NOM} \ T-Fin] \ [to] \ think] \] \ ✔AGREE] \]

I assume Fin-T can assign Case to more than one NP (cf. Hiraiwa 2002). The possessor moves to FinP Spec and gets accusative Case. The possessee in the embedded clause retains its nominative Case. Movement into the matrix VP and nominative Case assignment are independent here.

Further Prediction The analysis predicts that when *ka* loses its phi-features, NP movement across the ForceP should be possible. To can select *ka* (see Saito 2010, 2012, Takeuchi 2010):

‘Mary inquired whether Hanako is smart.’

Importantly, *ka* (and *to*) in (11) resist Case, as shown in (12).

(12) Mary-ga [ReportP Hanako-ga kasiko-i *ka*(*-o) to(*-o)] tazune-ta.
Mary-ΝΟΜ[ReportP Hanako-ΝΟΜ smart-PRS Force(*-ACC) Report(*-ACC)] inquire-PST
‘Mary inquired whether Hanako is smart.’

I thus assume that *ka* and *to* do not bear phi-features in (12). NP-movement into the matrix VP is indeed possible from such a ReportP (cf. Takeuchi 2010):

(13) Mary-ga [VP Hanako-o orokanimo[ReportP \[i \ [TP \ t_i{\{kasiko-i\}}] \ ka to] tazune-ta.
Mary-ΝΟΜ[VP Hanako-ACC suddenly [ReportP \[i \ [TP \ t_i{\{smart-PRS\}} Force Report] inquire-PST
‘Mary stupidly inquired whether Hanako is smart.’

(13) is analyzed as follows:

(14) \[[[νP] [[VP NP{ACC} suddenly[ReportP|ForceP|FinP \[i \ [TP \ t_i{\{NOM\}}] \ T-Fin] \ [ka] \ [to] \ think] \] \ ✔AGREE] \]

As *ka* does not bear phi-features in (13) and (14), the matrix *ν*- *V* can agree with the embedded subject, which yields NP movement into the matrix VP as well.